

# Toward Interpretable Graph Classification via Concept-Focused Structural Correspondence

Tien-Cuong (Alex) Bui Department of ECE Seoul National University Seoul, South Korea

Wen-Syan Li Graduate School of Data Science Seoul National University Seoul, South Korea

#### **Presentation Outline**

#### 01 Introduction

#### 02 Proposed Methods

#### 03 Experiments

#### 04 Conclusion & Future Work

### GNNs in Action. Real-World Use Cases





#### **Skeleton-based Action Recognition**







#### Supply Chain Momentum Strategies with Graph Neural Networks

Bloomberg Quant Research

Recommender Systems

**Fraud Detection** 

Spatio-tempora Graph Neural

### Interpretability VS ACCuracy Trade-off



#### https://medium.com/data-folks-indonesia/overview-interpretable-machine-learning-cb0b4f2e01dd

### Shortcomings of XAT Methods for Graphs

#### Feature attribution

- Traditional methods struggle with the relational nature of graphs
- Focus on individual nodes/edges might miss complex interactions

#### Example-based approach

- Identifying relevant examples in large graphs is challenging
- May not reveal the underlying logic behind a model's decision

#### • Post-hoc GNN Explanations

- Require additional computation costs
- Relying solely on the model's outputs to generate explanations
- Inaccurate explanations, particularly for complex models

#### Self-explainable GNNs

- Ignore existing GNN architectures
- Model-specific and difficult to generalize

### Framework Overview

- Inspired by **natural interpretability of KNN**
- **Phase 1:** Learning concept-focused graph representations
- **Phase 2:** Infer graph classes based on graph structure similarity
  - Measuring graph similarity via concept-focused optimal transport distance



### Phase 1: Concept-focused Graph Representation Learning

• Goal: extracting frequent substructures (concepts) signifying specific outcomes

- Formulate the optimization problem based on graph information bottleneck  $\max_{\tilde{\mathcal{G}} \subset \mathcal{G}} I(\hat{Y}, \tilde{\mathcal{G}}) - \alpha I(\mathcal{G}, \tilde{\mathcal{G}}) + \beta I(\hat{Y}, \mathcal{G})$ Subgraph extraction constraint
- I ~ mutual information between 2 variables
  - Optimizing I(Y, G) via cross-entropy loss
  - Optimizing I(G, G<sup>~</sup>) via f-divergence of KL-divergence (Donsker and Varadhan)

### Phase 2: Interpretable Prediction

- **Step 1:** Collect concept-based graph representations
  - Execute representation module over all training graphs
  - Manage representations in a vector database
- Step 2: Two-stage reference selection
  - Euclidean-based retrieval, followed by reranking with structure similarity metric

$$\mathcal{R}_{\mathcal{G}} = \text{Structure}_{\text{Rank}}(\mathcal{R}^{e}_{\mathcal{G}}, K) \quad \text{s.t.} \quad \mathcal{R}^{e}_{\mathcal{G}} = \text{KNN}(h_{\mathcal{G}_{s}}, \alpha K)$$

• Step 3: Infer prediction based on structure similarity to reference concepts

$$P(\hat{Y}|\mathcal{G}, \mathcal{R}_{\mathcal{G}}) = \sum_{i=1}^{K} a(\mathcal{G}, R_i) Y_i \quad \text{s.t} \quad a(\mathcal{G}, R_i) = \text{softmax}(s_{\text{sc}}(\mathcal{G}, R_i))$$

# Graph Structure Similarity

- **Goal:** Measuring structure similarity between two graphs
- Assumption: node embeddings hold structure information
- **Relaxation:** Graph structure similarity ~ distance between two distributions
- **Problem:** Finding an optimal transport flow matrix *T*\* between two distributions
- Solution:
  - $D = (d_{ij}) \in \mathbb{R}^{N \times N} \sim a$  ground distance matrix
    - $d_{ij}$  ~ Euclidean distance between two interconnected nodes
  - If  $d_{ij}$  is large,  $t_{ij}$  must be small, otherwise
  - Solve the optimization problem via Sinkhorn algorithm



## Explanation Construction



An example of a prediction's explanation

#### DATASETS

- Conducted experiments with 5 graph classification datasets
- Using 10-fold cross-validation with 8:1:1 splitting strategy

| Dataset Name | #Graphs | #Avg vertices | #Avg edges | #Features | #Labels |
|--------------|---------|---------------|------------|-----------|---------|
| Mutag        | 188     | 17.93         | 19.79      | 7         | 2       |
| Proteins     | 1113    | 39.06         | 72.82      | 29        | 2       |
| IMDB-Binary  | 1000    | 19.77         | 96.53      | 271       | 2       |
| DD           | 1178    | 284.32        | 715.66     | 89        | 2       |
| Twitter      | 6940    | 11.9K         | 20.10      | 768       | 3       |

### BASELINES

- Compared with 2 groups of baselines & 4 GNN backbones
- GNN backbones:
  - GCN: a fundamental GNN model based on spectral graph concept
  - **GraphSage:** an inductive learning framework leveraging graph convolutions and neighbor sampling to generate node embeddings
  - **GIN:** employing learnable aggregation functions to increase expressive power
  - **GAT**: modelling interactions between nodes
- 2 groups of baselines:
  - **Group 1:** training backbones with cross-entropy loss function
  - **Group 2:** training backbones with graph information bottleneck theory

## Accuracy Comparison

- Our proposed method boosts predictive performance of GNNs
- Outperformance two groups of baselines

|                             | Backbone  | Mutag | Proteins | IMDB  | DD    | Twitter |
|-----------------------------|-----------|-------|----------|-------|-------|---------|
| Backbone<br>Training        | GCN       | 0.718 | 0.714    | 0.710 | 0.715 | 0.642   |
|                             | GraphSage | 0.730 | 0.694    | 0.715 | 0.743 | 0.636   |
|                             | GIN       | 0.862 | 0.750    | 0.726 | 0.699 | 0.651   |
|                             | GAT       | 0.750 | 0.672    | 0.726 | 0.699 | 0.664   |
| GIB Training                | GCN       | 0.772 | 0.731    | 0.726 | 0.765 | 0.513   |
|                             | GraphSage | 0.750 | 0.699    | 0.720 | 0.772 | 0.546   |
|                             | GIN       | 0.841 | 0.721    | 0.702 | 0.729 | 0.630   |
|                             | GAT       | 0.771 | 0.684    | 0.717 | 0.698 | 0.505   |
| Interpretable<br>Predictors | GCN       | 0.846 | 0.706    | 0.702 | 0.785 | 0.678   |
|                             | GraphSage | 0.862 | 0.739    | 0.728 | 0.778 | 0.658   |
|                             | GIN       | 0.877 | 0.757    | 0.724 | 0.750 | 0.633   |
|                             | GAT       | 0.798 | 0.738    | 0.729 | 0.769 | 0.683   |

### Execution Time Evaluation

- Representation module focus on discovering patterns and concepts in training
- Calculating structure similarity is the main bottleneck in inference



### Qualitative Evaluation

- Concept-focused node initialization yields clearer visualization
- Only focus on most similar nodes between two graphs



(a) Concept-based Correspondence

(b) Uniform-based Correspondence

### User Evaluation of Prediction Explanations

- **Goal:** Assessing user perception of different explanation modalities
- **How:** Organizing a user study with 20 participants
  - Predicting model outcomes given different explanation types
- Notable Insights:
  - Presenting only subgraphs had a limited impact on user comprehension and confidence
  - Concept-based references improved user understanding and consensus with the model
  - Incorporating diverse information types enhances user comprehension



(1) PG-Explainer subgraph(2) Concept-focused subgraph(3) Concept-focused subgraph and references with similarity scores

## Conclusion & Future Work

- Introduced a concept-based approach to interpretable graph classification
- Structural similarity with Earth Mover's Distance (EMD) enhances interpretability
- Non-parametric prediction model yields clear explanations
- Efficient computation with a dual-phase distance strategy
- Explanations tailored for diverse user needs
- Comprehensive evaluation and user study confirm effectiveness
- Future Work:
  - Incorporating human-knowledge constraints into concept discovery
  - Organizing the concept corpus hierarchically for efficient exploration
  - Introducing interactive features with a user-friendly interface to enhance interpretability and usability

# **THANK YOU !**



# **QUESTIONS**