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GNNs in Action: Real-world Use Cases

Spatio-temporal 
Graph Neural 
Networks
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Fraud DetectionRecommender Systems

Pinter
est
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Skeleton-based Action Recognition
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Interpretability vs Accuracy Trade-off
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https://medium.com/data-folks-indonesia/overview-interpretable-machine-learning-cb0b4f2e01dd
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● Feature attribution 
• Traditional methods struggle with the relational nature of graphs

• Focus on individual nodes/edges might miss complex interactions 

● Example-based approach
• Identifying relevant examples in large graphs is challenging

• May not reveal the underlying logic behind a model's decision

● Post-hoc GNN Explanations
• Require additional computation costs

• Relying solely on the model's outputs to generate explanations

• Inaccurate explanations, particularly for complex models 

● Self-explainable GNNs 
• Ignore existing GNN architectures

• Model-specific and difficult to generalize 

Shortcomings of XAI Methods for Graphs
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Framework Overview

● Inspired by natural interpretability of KNN

● Phase 1: Learning concept-focused graph representations

● Phase 2: Infer graph classes based on graph structure similarity

• Measuring graph similarity via concept-focused optimal transport distance

6Learning concept-based graph representations Inference phase
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Phase 1: Concept-focused Graph Representation Learning

● Formulate the optimization problem based on graph information bottleneck
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● Goal: extracting frequent substructures (concepts) signifying specific outcomes

Subgraph extraction constraint 

● I ~ mutual information between 2 variables

• Optimizing I(Y, G) via cross-entropy loss

• Optimizing I(G, G~) via f-divergence of KL-divergence (Donsker and Varadhan)

Yu et al., “Graph information bottleneck for subgraph recognition” 
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Phase 2: Interpretable Prediction 

● Step 1: Collect concept-based graph representations 

• Execute representation module over all training graphs

• Manage representations in a vector database

● Step 2: Two-stage reference selection 

• Euclidean-based retrieval, followed by reranking with structure similarity metric

8

● Step 3: Infer prediction based on structure similarity to reference concepts
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Graph Structure Similarity
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● Goal: Measuring structure similarity between two graphs

● Assumption: node embeddings hold structure information 

● Relaxation: Graph structure similarity ~ distance between two distributions 

● Problem: Finding an optimal transport flow matrix T* between two distributions

● Solution:

○ D = (dij) ∈ RN×N ~ a ground distance matrix 

■ dij ~ Euclidean distance between two interconnected nodes 

○ If dij is large, tij must be small, otherwise

○ Solve the optimization problem via Sinkhorn algorithm
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Explanation Construction
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An example of a prediction’s explanation
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DATASETS

● Conducted experiments with 5 graph classification datasets

● Using 10-fold cross-validation with 8:1:1 splitting strategy 

Dataset Name #Graphs #Avg vertices #Avg edges #Features #Labels

Mutag 188 17.93 19.79 7 2

Proteins 1113 39.06 72.82 29 2

IMDB-Binary 1000 19.77 96.53 271 2

DD 1178 284.32 715.66 89 2

Twitter 6940 11.9K 20.10 768 3

K: 103 11
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BASELINES

● Compared with 2 groups of baselines & 4 GNN backbones

● GNN backbones: 

• GCN: a fundamental GNN model based on spectral graph concept

• GraphSage: an inductive learning framework leveraging graph convolutions and neighbor 

sampling to generate node embeddings

• GIN: employing learnable aggregation functions to increase expressive power

• GAT: modelling interactions between nodes

● 2 groups of baselines:

• Group 1: training backbones with cross-entropy loss function

• Group 2: training backbones with graph information bottleneck theory

12Yu et al., “Graph information bottleneck for subgraph recognition” 
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Accuracy Comparison

● Our proposed method boosts predictive performance of GNNs

● Outperformance two groups of baselines
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Backbone Mutag Proteins IMDB DD Twitter

Backbone 
Training

GCN 0.718 0.714 0.710 0.715 0.642

GraphSage 0.730 0.694 0.715 0.743 0.636

GIN 0.862 0.750 0.726 0.699 0.651

GAT 0.750 0.672 0.726 0.699 0.664

GIB Training

GCN 0.772 0.731 0.726 0.765 0.513

GraphSage 0.750 0.699 0.720 0.772 0.546

GIN 0.841 0.721 0.702 0.729 0.630

GAT 0.771 0.684 0.717 0.698 0.505

Interpretable 
Predictors

GCN 0.846 0.706 0.702 0.785 0.678

GraphSage 0.862 0.739 0.728 0.778 0.658

GIN 0.877 0.757 0.724 0.750 0.633

GAT 0.798 0.738 0.729 0.769 0.683

GIB: Graph information bottleneck
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Execution Time Evaluation

● Representation module focus on discovering patterns and concepts in training

● Calculating structure similarity is the main bottleneck in inference
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Qualitative Evaluation

● Concept-focused node initialization yields clearer visualization

● Only focus on most similar nodes between two graphs

15
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User Evaluation of Prediction Explanations

● Goal: Assessing user perception of different explanation modalities

● How: Organizing a user study with 20 participants 

• Predicting model outcomes given different explanation types

● Notable Insights:

• Presenting only subgraphs had a limited impact on user comprehension and confidence

• Concept-based references improved user understanding and consensus with the model

• Incorporating diverse information types enhances user comprehension

16

(1) PG-Explainer subgraph
(2) Concept-focused subgraph
(3) Concept-focused subgraph and 
references with similarity scores
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Conclusion & Future Work

• Introduced a concept-based approach to interpretable graph classification

• Structural similarity with Earth Mover's Distance (EMD) enhances interpretability

• Non-parametric prediction model yields clear explanations

• Efficient computation with a dual-phase distance strategy

• Explanations tailored for diverse user needs

• Comprehensive evaluation and user study confirm effectiveness

• Future Work:

• Incorporating human-knowledge constraints into concept discovery

• Organizing the concept corpus hierarchically for efficient exploration

• Introducing interactive features with a user-friendly interface to enhance interpretability and usability

17
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THANK YOU !



QUESTIONS

19


	Slide 1
	Slide 2
	Slide 3: GNNs in Action: Real-world Use Cases
	Slide 4: Interpretability vs Accuracy Trade-off
	Slide 5: Shortcomings of XAI Methods for Graphs
	Slide 6: Framework Overview
	Slide 7: Phase 1: Concept-focused Graph Representation Learning
	Slide 8: Phase 2: Interpretable Prediction 
	Slide 9: Graph Structure Similarity
	Slide 10: Explanation Construction
	Slide 11: DATASETS
	Slide 12: BASELINES
	Slide 13: Accuracy Comparison
	Slide 14: Execution Time Evaluation
	Slide 15: Qualitative Evaluation
	Slide 16: User Evaluation of Prediction Explanations
	Slide 17: Conclusion & Future Work
	Slide 18
	Slide 19

